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In this paper we study the quasi-stationary turbulent state developed by an 
incompressible flow submitted to a constant periodic force. The turbulent state is 
described by its Lyapunov exponents and Lyapunov dimension. Our aim is to 
investigate in particular if the dimension is, as several lines of argument seem to 
indicate, given in one way or another by the number of ‘turbulent ’ modes present 
in the flow. 

The exponents may be viewed as the asymptotic limits of local exponents, which 
are the divergence rates between the actual state of the fluid and nearby states. These 
local exponents fluctuate as the fluid suffers chaotic changes : they are systematically 
larger during bursts of excitation at  large scale. In one case, we find that the flow 
oscillates repeatedly, on a very long timescale, between two distinct turbulent states, 
which have distinct local Lyapunov spectra and also distinct energy spectra. A t  the 
moderate resolutions studied here (642, 1282 and 163), we find that the dimension of 
the attractor in flows with standard dissipation is bounded above by the number of 
degrees of freedom contained in the large scales, i.e. at  wavenumbers smaller than 
that of the injection wavenumber k,. We also consider two-dimensional flows with 
artificial terms (hyperviscosity), which concentrate small-scale dissipation in a 
narrow band of wavenumbers, and allow the formation of an inertial range. The 
dimension in these flows is no longer bounded by the number of large scales; it grows 
with, but remains significantly smaller than, the number of modes contained in the 
inertial range. It is conjectured that this is due to the presence of coherent structures 
in the flow, and that at  higher resolutions also, the presence of coherent structures 
in turbulent flows will lead to an effective attractor dimension significantly lower 
than the estimations based on self-similar Kolmogorov theories. 

1. Introduction 
Simulating real, atmospheric or astrophysical flows is out of reach for now and the 

near future, owing to computer resources that are limited in time and memory. In 
practice, one has to model the flow in one way or anobher. Direct numerical 
simulations with pseudo-spectral methods are an example of ‘ minimal ’ modelling : 
they amount to computing the solutions of a subset of modes of the Navier-Stokes 
equations, keeping enough modes in this subset to represent both all the ‘inertial’ 
modes (those for which the nonlinear interactions dominate dissipative terms) and a 
reasonable number of the rest of them, the ‘dissipative ’ modes. 

If one could show that the dimension of the turbulent attractor of a given flow is 
much smaller than the number of modes necessary for a standard numerical 
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simulation, then it would be legitimate to look for a more economical tool than the 
Fourier basis (see for instance Kraichnan 1987). On the other hand, if the dimension 
is low, the associated chaos will probably be similar to the ‘deterministic’ chaos of 
other low-dimensional systems, while a large dimension would imply that a 
description is possible only in a statistical sense (Atten et al. 1984). 

This question has received so far two kinds of contradictory answers : 
(a )  Analytical arguments by Constantin et al. (1985), as well as numerical 

computations of the Lyapunov dimension in models of fully developed turbulence 
(Grappin, Ldorat & Pouquet 1986; Yamada & Ohkitani 1988; see also Manneville 
1985) have given consistency to the idea that the number of degrees of freedom in 
fully developed turbulence grows as the number of modes contained in the inertial 
range (Landau & Lifshitz 1971). This seems to leave no hope for any substantial 
reduction of the number of degrees of freedom in turbulence modelling. 

(b)  On the other hand, direct measurements of the attractor dimension via 
numerical simulations of two-dimensional, incompressible, periodic flow, have given 
surprisingly low values. Using two different methods of calculations, Lafon (1985) 
and Grappin & Ldorat (1987) reported values always below 25, for flows of resolution 
642 and 12B2, which thus contained a total number of degrees of freedom about 2000 
and lo4 respectively. 

We report in this paper a systematic study of periodic incompressible flows driven 
by a constant periodic force; a first account of the results was given in Grappin & 
Ldorat (1987) (herein after referred to  as GL87), and a preliminary version of this 
paper was published in Grappin & Le’orat (1989). A periodic flow is an idealization 
of an homogeneous flow, and leads to  the minimum computational constraint. The 
maximum resolution that we shall consider is 1 B 2  in two-dimensional flows, and 163 
in three-dimensional flows. I n  two-dimensional flows, we found it  interesting to 
compare flows with standard dissipation and artificial dissipation, the latter allowing 
a wider range of excited scales a t  a given resolution. 

The main difference between two- and three-dimensional flows is that in the latter 
case, the direct transfer of excitation towards small sales is not inhibited by the 
(inviscid) conservation of enstrophy which holds in two-dimensional flows. Thus, 
larger dimensions might be obtained more easily in three-dimensional flows, a t  the 
price of still larger memory requirements for a given resolution, i.e. for a given ratio 
of the largest/smallest scale. 

We write the two-dimensional incompressible Navier-Stokes equations in terms of 
the stream function @ (the velocity being u = (a@/ay,-a@/ax)) as 

where F is the force, and D is the operator associated with dissipation. We shall use 
both the standard form : 

and another, less standard form, which combines two artificial dissipative terms, a 
hyperviscosity (iterated Laplacian) and a large-scale ‘friction ’ (inverse Laplacian 

(1c) 

The hyperviscosity term reduces to  the standard Laplacian term when p = 1. p > 1 
has been used to obtain a clearer separation of the dissipative scales from the inertial 
range (see Basdevant et al. 1981) ; it has been shown to provide results comparable 

D(@) = vV2@, (1b)  

v-”) : 
D(@) = ( -  1 ) P - l  v ,V~P@+V-~@. 



Lyapunov exponents and the dimension of periodic incompressible flows 63 

with those obtained at larger resolutions with p = 1, so long as some care is taken to 
keep a minimum number of dissipative scales. The friction term provides a large- 
scale sink for the energy that is transferred from smaller scales, hence it helps to 
establish more quickly a statistical equilibrium (see Babiano et al. 1987 ; Legras, 
Santangelo & Benzi 1988). 

In two-dimensional flows, we consider two kinds of forcing : either a (constant) 
white noise in a definite frequency band, or a harmonic force with wavenumber k,: 

F(x, y) = f cos (kf y). ( I d )  

In three-dimensional flows, we shall again consider either a white noise, or a small 
(6) perturbation of the above harmonic force : 

F =  ( f c o s ( k , y ) , ~ ~ o s ( ~ k ~ ~ ) , ~ ~ ~ ~ ( ~ k ~ y ) ) .  (1 e )  
One way to obtain a turbulent state is to start with an (unstable) equilibrium flow : 

a small perturbation will grow first linearly and then eventually generate chaos by 
nonlinear interactions. In two-dimensional flows, the so-called Kolmogorov flow 
(Kolmogorov 1960; Obukhov 1983) has the required properties; it  is obtained by 
balancing the dissipation term D( @) with harmonic forcing in the x-direction (1 d ), 
so that D(@) = -F. With standard dissipation (1 b), it has the solution 

@O(X, Y)  = F ( X >  y)/(vk,2) = ( f /uk3  cos (k, Y), 

uz = -f/( uk,) sin (k, y). 

P a )  

(26) 

so that the velocity is parallel to the x-direction, with its x-component given by 

Note that the nonlinear terms are zero. We define the initial Reynolds number as 
Ro = uo/(vk,) = f/(uk,)2. When Ro > 4 2 ,  this flow is linearly unstable, in particular 
to large-scale perturbations in the y-direction (at  k = ikf when Ro is large enough ; see 
Meshalkin & Sinai' 1961, Green 1974; also Grappin, L6orat & Londrillo 1988). 

With the artificial dissipation term ( l c ) ,  the friction term V2@ is dominant at  
large scale, so that the amplitude @O of the Kolmogorov flow is given V2@ = -F, or 

@' = kp2f cos (kf y), (3a)  

uz = -fk;sin(k,y). (3b )  

and the x-component of the velocity is 

The criterion for the instability of the Kolmogorov flow now becomes fi0 = uok: = 
fk! > 4 2 .  

The instability of the Kolmogorov flow may be used as a basic ingredient in 
scenarios for the transfer of excitation towards much larger scales (k 4 kf) (Green 
1974; She 1987). With one exception, the flows that we shall consider in this paper 
will show a large-scale transfer restricted to one or two octaves, as the initial 
characteristic scale will be one half or one quarter of the size of the periodic box: 
k, = 2 or 4. In this case, the perpendicular instability of mode +kf in a Kolmogorov 
flow of wavenumber k, directly drives the onset of turbulence in two-dimensional 
flows (see for instance Grappin et al. 1988). 

A three-dimensional generalization of the Kolmogorov flow is provided by the so- 
called ABC flows, which are generally unstable above a critical Reynolds number, 
with a growth time comparable with the dynamical timescale of the flow when the 
Reynolds number is large enough (Galloway & Frisch 1987). We shall not investigate 
such flows in detail. We shall obtain a three-dimensional turbulent state via either 
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a slight perturbation of the Kolmogorov forcing (1 e), or via a white-noise forcing in 
a wavenumber band around kf. 

We now define some notation. In flows with standard dissipation (1 b),  we define 
the integral and Taylor Reynolds numbers as R, = U/vk, and R, = U/vk,, where U 
is the r.m.s. velocity, and the wavenumbers are defined from the energy spectra E, 
as 

k, = k k d k / {  k k d k / k }  and k, = { Ik"E,dk/P,dk):. 

When starting the integration with a flow of well-defined amplitude u and 
wavenumber k,, we shall also use the 'initial' Reynolds number Ro = u/(vk,). When 
using a hyperviscosity v,, with p > 1, ( l c ) ,  the standard definitions of Reynolds 
numbers cannot be used; we define a modified Reynolds number R ,  as 

R,  = U/(k?-l vJ, (4a) 

with 

so that when p = 1 one recovers the usual definition of the Taylor Reynolds number 
and wavenumber, R, = R, and k, = k,. 

The plan of the paper is as follows. Section 2 contains a description of the 
numerical method. Section 3 describes the onset of turbulence in two-dimensional 
flows with standard dissipation. In $4, we investigate the relation between the 
dimension and the parameters of the flow : we consider in turn two-dimensional flows 
with standard dissipation and artificial dissipation, and three-dimensional flows ; 
finally we study the properties of the basis of Lyapunov vectors. Section 5 is a 
summary and conclusion. 

2. Measuring the Lyapunov exponents of turbulent flows 
In order to measure the dimension of the NavierStokes equations, we shall use the 

method described in GL87, which consists in computing Lyapunov exponents, from 
which the Lyapunov dimension may be deduced via the Kaplan-Yorke formula. We 
give here an account of the method and of the way we have applied it to the case of 
the two-dimensional Navier-Stokes equations (1)  ; we shall mention the difference 
arising from an extension to the three-dimensional case. 

To evaluate the first (largest) Lyapunov exponent, we need to integrate two 
equations in parallel : the Navier-Stokes equations ( 1 )  for the stream function $, and 
the equation for the linearized stream function a$, linearized about @: 

with Su = (aS$/ay, -aS@/ax). Consider the norm ~ ( t )  = IIS@(t) 11. It is a linear measure 
of the distance between the actual state $ of the fluid and a nearby state $ + S$, and 
may be considered as the error in measuring the true state of the fluid, given an initial 
error € ( t o ) .  The asymptotic limit of the growth rate of this error E defines the first 

1% { W e ( t O ) )  
Lyapunov exponent A, : 

A, = Lim 
t*w ( t  - t o )  

Benettin et al. (1980) have shown how to obtain numerically the whole set of 
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Lyapunov exponents, corresponding to average error growth rates in the different 
(orthogonal) directions of phase space. The total number of exponents is equal to the 
total dimension N of the phase space of the numerical solution of (l), i.e. to the 
number of degrees of freedom present in the numerical system. Note however that 
in practice it will not be necessary to compute the whole spectrum of exponents, but 
only a limited number M (see below). 

The procedure is as follows. We integrate (5 )  with M independent initial states 
&,Po, the set {a$"} being orthonormal. We re-orthonormalize, at regular time 
intervals, the set ofM linear solutions &ha(t), using the Gram-Schmidt procedure. As 
a byproduct, we obtain the increase of the norms = II&P(t) 11 of the solutions in each 
orthogonal direction of phase space. We define now the ' local ' Lyapunov exponents 
A,( t )  as the local growth rates of the errors ei = Il&,P(t)II measured in the finite time 
interval [ to .  tl : 

As in '6), the Lyapunov exponents A, are the asymptotic limit of the local exponents 
Aiic, when t + CO. 

In both (6) and (7),  to is the time at which we choose to start to evaluate the 
exponents ; it is not necessarily equal to the time wrr' ,pending to the initial state of 
the fluid. Indeed, although the asymptotic limits A, are independent of to (see 
Oseledec 1968), the transient behaviour will also be of interest, as we shall see that 
the dependence of the A,(t) on to at finite times t gives interesting information on the 
fluid behaviour. 

To be able to orthonormalize, we have to define a scalar product on RN (recall that 
Nis the total number of degrees of freedom of the solution). Nis actually smaller than 
the number of grid points in the periodic box, since we use a standard isotropic 
truncation of the set of Fourier modes, eliminating wavenumbers larger than k,,,, 
which is equal to half the number of grid points in each direction of our periodic box. 
Moreover, the two (or three) components of the velocity are not independent, owing 
to the incompressibility of the flow (div u = 0). This leaves about N x nkkax degrees 
of freedom in two-dimensional flows, and N x gnkLax in three-dimensional flows. 

In the two-dimensional case, we define the scalar product of two solutions of (5), 
x and $, by the real pa;t of the Hermitian product of their Fourier transforms R and 
#:($,$) = xRe(a,,#:), where the summation is made on all modes n,  such that 
k, 2 0, which are precisely those stored in the computer. This definition (which 
differs only slightly from the standard L2 inner product) allows a fast numerical 
computation. One checks that it indeed satisfies the properties of a scalar product, 
which is all that is required for the exponents to converge (Oseledec 1968; Benettin 
et al. 1980). 

In the three-dimensional case, we integrate all three components of the velocity. 
We start initially with a divergence-free field, impose a divergence-free external 
force, and check that the velocity field remains solenoidal. We define the scalar 
product as in the two-dimensional case, with the summation now made on the three 
components of the velocity Fourier modes. We have checked numerically that this 
definition leads to the correct Lyapunov dimension in both the two- and three- 
dimensional cases, and in particular that the Lyapunov dimension of inviscid flows 
is equal to (and not larger than) N (see (9) below). 

There are as many Lyapunov exponents as there are independent degrees of 
freedom in the system ( N ) .  The dimension of the attractor is less than N :  it is 
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obtained by noting how many exponents are necessary for the cumulated sum 
A(n) = A,+A,+ ... +1, (with A, > A,  > ... > A,) to change its sign. In  other words, 
the integer part of the dimension N ,  satisfies A(Nc >, 0 and A(N, + 1 )  < 0. Kaplan & 
Yorke (1979) give the following interpolation formula for the Lyapunov dimension 
d, : 

(8) dL = Nc+A(N,)/lArv,+,l. 

The sum of all Lyapunov exponents, A ( N ) ,  is the rate of contraction of an N- 
volume in phase space. It can be expressed in terms of the product of the viscosity 
v by the sum of the squares of the wavenumbers k, : 

N 

A ( N )  = - V  ki. 
71-1 

(9) 

This formula implies in particular that, when v = 0, A ( N )  = 0, i.e. d, = N ;  more 
generally, (9) can provide a test for the numerical procedure when all N Lyapunov 
exponents are known (M = N ) .  

Note that computing M exponents increases the time and memory needs by a 
factor (M+ l ) ,  compared to integrating the Navier-Stokes equations ( 1 )  alone. As 
seen from (8), the only constraint for M is that it has to  be larger than the dimension 
d, (if we calculate an insufficient number of exponents, we still would be able to find 
an estimation ofd, by extrapolating the curve A(n)  to  guess its intersection with the 
origin; this procedure will not be used in this paper). The dimension is of course 
unknown when we begin the calculation, but an a priori upper estimation (based on 
preliminary runs) allows us to choose M .  Typically, M will be between about 10 and 
100, and N between about 3000 and 12000. To obtain stable temporal averages and 
a well-ordered Lyapunov spectrum (i.e. A, > A, > . . . > A,) requires simulations over 
very long durations, typically 60000 time steps, or 1000 turnover times; we shall 
study the convergence problem in some detail, although we shall not feel obliged to 
meet stringent convergence criteria such as those developed for smaller systems (see 
Manneville 1985). 

The computations have been done on a CRAY 2 which provides a multitasked 
system with four processors. Multitasking was used in the following way. We give to 
each of the four processors the task of computing independently the nonlinear 
solution $ together with one quarter of the M linear solutions a@. The reason why 
each processor has to integrate its own version of (1) is because the new value of $ 
is needed at each time step to proceed with the integration of each of the 8$ 
trajectories, and we do not want the processors to  wait for one another at each time 
step. About every 1000 to 4000 time steps, the whole set of linear solutions 8$, is 
copied to  the main processor, which orthonormalizes them. Such a procedure allows 
a high degree of multitasking, and proves to be a good choice even when computing 
a small set of exponents. 

We use a spectral code with periodic boundary conditions, explicit time-stepping 
(Adams-Bashforth scheme) for nonlinear terms, and implicit Cranck-Nicolson 
scheme for dissipative terms. The two-dimensional code is the same as the one used 
in Grappin et al. (1988). 

Table 1 gives a summary of the runs, with the measured Lyapunov dimension dL, 
and the main parameter: v is the viscosity, k, the forcing wavenumber (the unit 
wavenumber is k, = 2nL, where L is the size of the periodic box) ; dt is the time step, 
T is the integration time, U,  k, and rNL = (k, U)-' are time-averaged quantities: 
r.m.s. velocity, Taylor wavenumber and nonlinear turnover time. There are three 
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Run Res 

AX 64' 
AZ 64' 
AS 64' 
AP 64' 
AK 64' 
AG 64' 
AL 8' 
AN 1 6' 
AP1 322 
Bbx 642 
Bzz 64' 
Bcg 128' 
Bcc 128' 
Bzs 64' 
Bbg 64' 
Bbb M2 
Bze 64' 
CY 1 63 
CE 163 
C J  1 63 

v k, 
0.12 4 
0.08 4 
0.06 4 
0.03 4 
0.015 4 
0.005 8-10 
0 2 
0.01 2 
0.005 4 
[0.3] 2 
[0.06] 2 
[0.16] 2 
[0.03] 2 
[0.3] 2 
[0.16] 2 
[0.08] 2 
[0.3] 2 
0.01 2 
0.01 2 
0.005 2 

dt 

0.002 
0.003 
0.004 
0.008 
0.01 
0.01 
0.04 
0.02 
0.01 
0.08 
0.08 
0.04 
0.04 
0.08 
0.08 
0.08 
0.08 
0.02 
0.02 
0.02 

T 
160 
430 
320 
320 
600 
80 
200 
200 
200 
120 
120 
120 
120 
120 
120 
120 
120 
240 
160 
80 

U 

1.22 
0.96 
1.10 
1 .00 
0.88 
0.32 
0.84 
0.47 
0.51 
0.82 
0.93 
0.95 
0.98 
0.99 
1 .oo 
1.01 
1.02 
0.29 
0.29 
0.30 

kA 

3.30 
3.20 
3.10 
1.80 
1.80 
6.20 
1.70 
1.30 
1.50 
2.39 
2.33 
2.32 
2.30 
2.31 
2.29 
2.28 
2.26 
2.48 
2.61 
3.47 

TNL 

0.25 
0.33 
0.29 
0.56 
0.63 
0.51 
0.70 
1.64 
1.31 
0.51 
0.46 
0.45 
0.44 
0.44 
0.44 
0.43 
0.43 
1.38 
1.30 
0.95 

N 

3000 
3000 
3000 
3000 
3000 
3000 
28 
148 
708 
3000 
3000 
12452 
12452 
3000 
3000 
3000 
3000 
2836 
2836 
2836 

d ,  
0 
6.3 
13 
8.6 
17 
123 
28 
8.5 
29 
0 
5.4 
5.5 
12 
21 
27 
30 
50 
48 
57 
105 

TABLE 1. Summary of runs. The first letter of the run indicate the type of the run : A and B denote 
two-dimensional simulations, C denotes three-dimensional simulations. Y is viscosity, k, is the 
injection wavenumber, d t  is time step, T is the integration time. U ,  kA and T ~ ,  are time-averaged 
quantities: r.m.8. velocity, Taylor wavenumber and nonlinear turnover time T ~ ,  = l / (kA v). N is 
the total number of degrees of freedom present in the simulation, and d, the Lyapunov dimension 
measured a t  time T. In the case of runs with artificial dissipation (beginning with B), v is an 
equivalent viscosity (see text). 

types of runs, denoted by the first letter of the run: A (resp. B) denotes two- 
dimensional simulations with standard dissipation ( 1 b) (resp. artificial dissipation 
( i c ) ) ;  C denotes three-dimensional simulations. In the case of runs with artificial 
dissipation (type B), we do not specify the parameters p and v p  (see below table 3), 
but indicate instead between brackets the 'equivalent' viscosity v which, if put in 
front of a standard ( p  = 1) dissipation term, would lead to the same dissipation rate 
as the iterated Laplacian term (1 c )  at maximum wavenumber k,,, : vk;, = v p  k%ax. 

3. The onset of turbulence in two-dimensional periodic flows 
We consider in this section two-dimensional flows with standard dissipation (type 

A), and examine how the dimension and exponents converge, illustrating the 
evolution of the flow towards a turbulent attractor. We begin by giving a classical 
description (i.e. using energy spectra and related quantities) of the onset of chaos and 
of the quasi-stationary state which is established when forcing balances turbulent 
dissipation in the average. 

In the turbulent phase, the maximum Reynolds number that we reach is about 80 
(see table 2). Much larger Reynolds numbers, and much larger resolution, are 
necessary to obtain fully developed turbulence (see for instance Brachet et al. 1988; 
Legras et al. 1988). For the purpose of this study, it will be sufficient that the 
Reynolds number Ro based on the amplitude of the equilibrium flow is clearly above 
the threshold value for nonlinear chaos (i.e. A, 2 0, or d ,  > 0), which appears here 
to be between 4 and 6 in two-dimensional flows (see runs AX and AZ, in table 2). 
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Run AX AZ AS AP AK AG AL AN AP 1 

Res 
k, 

R0 
dt 
T 
U 

V 

R, 
RA 
kA 

N L S  

dL 

N 

64' 
4 
0.12 
4.2 
0.002 
160 
1.22 
3.4 
3.1 
3.3 
3000 
48 
0 

64' 
4 
0.09 
6.2 
0.003 
430 
0.96 
4.8 
4.5 
3.2 
3000 
48 
6.3 

64' 
4 
0.06 
8.3 
0.004 
320 
1.09 
6.3 
5.9 
3.1 
3000 
48 
13 

64' 
4 
0.03 
16.7 
0.008 
320 
1 
29 
18.6 
1.8 
3000 
48 
8.6 

642 
4 
0.015 
33.3 
0.01 
600 
0.88 
49 
33 
1.8 
3000 
48 
17 

64* 
8,lO 
0.005 

0.01 
80 
0.32 
15 
10 
6.2 
3000 
310 
123 

* 

8' 
2 
0 

0.04 
200 
0.84 

co 

CQ 

CQ 

1.7 
28 
12 
28 

1 62 
2 
0.01 
55 
0.02 
200 
0.47 
38 
37 
1.3 
148 
12 
8.5 

32' 
4 
0.005 
74 
0.01 
200 
0.51 
81 
67 
1.5 
708 
50 
29 

TABLE 2. Two-dimensional runs (with standard dissipation). Res is the number of grid points, k, 
the injection wavenumber, v the viscosity, Ho the initial Reynolds based on the amplitude of the 
initial (Kolmogorov) flow, dt is time step, T is integration time. U ,  R,, RA and kA are time-averaged 
quantities. N is the total number of degrees of freedom, N ,  = rrkf is the number of degrees of 
freedom with wavenumber smaller than k,, d, is the Lyapunov dimension computed in the time 
interval [0, r] .  

Figures 1-5 illustrate the results obtained for the four main runs of type A that we 
shall analyse in some detail : AK, AP and AS (which are commented in this Section) 
and AG (which is commented in the next Section). 

3.1. General properties of the chaotic state 
If the initial Reynolds number is substantially larger than critical (RO must be larger 
than about 5 ,  see table 2), turbulence sets in as soon as the unstable large scales have 
reached about unity. This turbulent state is characterized by slow fluctuations of x- 
and y-components of the energy, the frequency of the oscillations being near the 
value of the first Lyapunov exponent (Grappin et al. 1988). Note that above this 
threshold, the dimension does not grow monotonically when Ro is increased (see table 
2). 

An important requirement, in measuring the attractor's dimension, is that the flow 
must have reached (statistical) stationarity. Let us examine in some detail three 
cases with growing viscosities: v = 0.015, 0.03 and 0.06 (runs AK, AP and AS 
respectively). The injection wavenumber is k, = 4, the forcing amplitude is f = jvk;, 
and the initial flow is a white-noise perturbation of the Kolmogorov flow (2), so that 
the amplitude of the unperturbed flow is the same for all three runs: uo = !jke = 2 
(hence the initial r.m.s. energy is Eo = 1). The Reynolds numbers based on the 
amplitude of the flows are thus Ro = u/(vk, = 1(2v), or 33.3, 16.7 and 8.3 respectively 
(see table 2). 

Although the initial conditions are identical for all runs, the average properties of 
the turbulent state which establishes itself after the linearly unstable transient phase 
are different. We show in figure l (a-c)  the spectra of x-, y- and total energies, 
averaged over the time interval [0,300]. Small scales (k > k, = 4) appear to be 
isotropic, but not the large scales : the y-direction dominates in runs AK and AP, the 
x-direction dominates in run AS. (Note that in figure 1 and in the following, x-, 'y- 
components are denoted by continuous and dashed lines respectively, and the total 
component by dotted lines). The medium scales are Reynolds-number independent : 
the energy level at k = 10 is almost exactly identical in the three runs (dashed 
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FIGURE 2. Evolution of some global parameters versus time. (a )  Run AK, ( b )  run AP, 
( e )  run AS, ( d )  run AG. Kotation as in figure 1. 
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FIGURE 3. Energy density E J t )  versus time in the three wavenumber shells k = 1 4 ,  for the 2-, y 
and total energies. (a) Run AK, ( b )  run AP, (c) run AS, ( d )  run AG. Notation as in figure 1 .  Thc 
roman numerals in (a) denote phases (see text, $3.2). 
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line (1) in the figure). Last, increasing the viscosity reduces the level of small-scale 
excitation, as expected (see the dashed line (2) which connects the energy levels at 
k = 20 in the figure). 

Figure 2 (a+) shows the time evolution of some quantities : the integral, Taylor 
and dissipation wavenumbers k,, k,, and k,, the integral and Taylor Reynolds 
numbers Ri and R,. In the three runs, R, fluctuates respectively around 30, 20 and 
5. The early quasi-linear large-scale instability results in an initial decrease of the 
integral wavenumber k,, which drops from 4 down to about unity for run AK and AP 
and to about 3 for run AS. The energy E also decreases initially (in one turnover 
time): this is because the excitation is transferred towards smaller scales, which 
induces an increase in the total dissipation rate. 

Figure ~ ( u - c )  shows, for the three runs separately, the time evolution of the 
energies in each of the wavenumber shells k = 1 to 4, and allows an estimate of the 
actual fluctuations of the large-scale modes about the average level shown in figure 1. 

3.2. Do the local exponents and the dimension converge T 

In order to examine the convergence of A, and d,, we found it convenient to plot the 
logarithm of the first ten errors ei(t)  instead of A,(t) : figure 4(a+) shows the et( t ) ,  for 
i = 1 to 10, and for runs AK, AP and AS. Recall that the local exponent h,(t)  is but 
the average slope of loga,(t) in the interval [ to ,  t ]  (equation (7)). Note that decreasing 
the viscosity does not systematically increase the number of positive exponents : it  
is smallest for run AP, which has the intermediate viscosity and Reynolds numbers; 
note also that the smallest amplitude of the fluctuations occurs for the intermediate 
viscosity and Reynolds number (run AP, see figure 3 b ) .  

One sees that, except for run AS (with lowest RO), the local exponents are far from 
constant. In particular, both runs AK and AS show an early phase with large local 
exponents, corresponding to the quasi-linear phase of large-scale instability (see also 
Grappin et al. 1988). 

Using the local values of Lyapunov exponents evaluated in the time intervals [to, 
t ] ,  we can calculate the corresponding Lyapunov dimension dL( t ) ,  as defined in (8). 
Figure 5(a-c) shows for the three runs the convergence of the dimension dL(t)  with 
time, using different values of the time to (the correspondence between labels and the 
value of to is given on top of the figure). One sees that in all runs, there is an early 
phase during which the dimension is over-evaluated, compared to the further 
evolution. The case of run AP is the simplest : the figure shows that dL(t)  no longer 
depends on to, once to is larger than 32 : the asymptotic value of d ,  should be close to 
5. Convergence is not as fast for run AS (figure 5 c ) ,  in which the dimension at  time 
t = 300 systematically decreases with to,  even at  large values. Run AK (figure 5 a )  has 
the slowest convergence rate: a t  time t = 300, d ,  is about 15 for to between 20 and 
100, it drops to d ,  x 10 when taking to = 160, which comes from the fact that a very 
slow growth rate occurs for all et in the period t > 160 (see figure 4a). 

The succession of rapid and slow phases, i.e. of large and small local exponents, a t  
times much larger than that of the quasi-linear phase, makes run AK interesting to 
study in more detail. We have counted six phases, and denoted them by roman 
numerals (included in the early linear phase) on figures 4(a), and also reported them 
on figures 3(a) and 5(a) .  The duration of these phases greatly exceeds the 
characteristic dynamical time, since the turnover time T N L  is here about 
unity (7NL x (k, U)-l x 0.7, with k, x 1.5 and U x 2/2E x 0.9). When comparing 
figures 4(a)  and 3(a) ,  we find that the ‘fast’ periods with large local exponents 
correspond to periods of bursts of activity in wavenumber shells k > 1 (figure 3a), 
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while periods with small exponents correspond to phases during which the spectrum 
is completely dominated by the first shell k = 1 .  

Such a feature has been found previously in two-dimensional flows for the (largest) 
error el( t )  corresponding to the first Lyapunov exponent A, (Grappin et al. 1988; see 
also Ohkitani & Yamada 1989). A consequence of these variations is of course that 
the numerical evaluation of the Lyapunov exponents (and thus of the dimension) 
may depend strongly on the choice of the time interval [ to ,  t ] ,  so long as t is not much 
larger than the characteristic duration of these phases. 

The preceding remarks suggest that the fluid oscillates between two distinct 
turbulent states and that their effective dimension may be evaluated separately, 
although the use of local exponents in the Kaplan-Yorke formula is probably 
questionable from a theoretical viewpoint. We have chosen the different starting 
times to in figure 5 (a) to coincide with the transition times between recurrent phases. 
One sees that the ‘slow’ phases (11, IV and VI)  have a common local dimension of 
about 12, while the ‘fast’ phases (I11 and V) have a common local dimension of about 
20. So, the fact that the dimension converges to about 17 (or 15 if one eliminates the 
early phase I) hides the fact that the attractor is probably made of two distinct 
subdomains of phase space. 

Finally, we note that starting with a Kolmogorov flow leads very gradually to an 
initial fast phase corresponding to the early quasi-linear unstable phase ; although 
the value of the dimension obtained by subtracting this initial phase (i.e. taking 
to x 20) is probably nearer the true one, we shall not usually repeat this procedure in 
the following (i.e. we shall take to = 0 ) ,  since we are more interested in understanding 
the physics of the problem, than in obtaining precise values of the dimension. 

4. Which are the pertinent degrees of freedom? 
4.1. The role of large scales in two-dimensional Jlows 

The preceding results show that, although there is no simple dependence of the 
Lyapunov dimension on Reynolds number, bursts of excitation at large scales raise 
the value of the exponents, and thus also lead to an increase of the instantaneous 
dimension of the attractor. This indicates that the number of active large scales 
might be an important factor in determining the value of the (asymptotic) Lyapunov 
dimension in these flows. Indeed, previous measurements of d ,  in similar flows, 
indicated that the injection scale k;’ is a determining factor : decreasing this scale by 
a factor two (from k, = 2 to k, = 4) a t  comparable Reynolds numbers led to a more 
than two-fold increase of the dimension d,: (GL87). 

In order to elucidate this point, we consider forcing at  a scale much smaller than 
previously, in a band of wavenumbers between 8 and 10: the forcing amplitudes are 
chosen randomly in this band, at the beginning of the run. We adopt this isotropic 
forcing in order to be able to compare directly our results with those of Lafon (1985), 
mentioned in 5 1. We checked that both kinds of forcing, either isotropic or harmonic, 
lead in fact to similar results. 

As shown in table 2 (run AG), the corresponding dimension is very large : d ,  x 120, 
at time t = 80. At that time, the large scales have all been excited (figure I d ) ,  and 
a statistically steady state has been established (figure 2d and 3d) .  Note that the 
nonlinear turnover time is shorter than in previous runs : rNL x 0.4, with k, x 8 and 
U = 4 2 E  x 0.3, so that t = 80 is about 200 turnover times. Note also that, although 
modes with k < 8 initially had zero excitation, energy has been transferred very 
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FIGURE 6. Spectrum of cumulated Lyapunov exponents A(n) ,  versus n, at times: t = 10 to 80 
(run AG). 

quickly (in fact in a time shorter than one) on the largest scales (see Grappin et al. 
1988). The average integral Reynolds number is about 10, with the viscosity being 
about the smallest compatible with a fair truncation (see figure I d ) .  The velocity 
field is completely isotropic at small scales, and almost isotropic a t  large scales. 

The convergence of dL(t)  is seen to be satisfactory a t  that time, when one starts 
with to = 10 (cf. figures 4d and 5d) .  The whole spectrum of (cumulated) exponents 
A(n)  measured for this run is shown in figure 6, for different times, from t = 10 to 
t = 80 (with to = 0). 

A comparison with Lafon’s (1985) results is in order. Lafon used a counting 
method to measure the correlation dimension d, of the same flow (same resolution, 
same forcing a t  the same scale). He varied the viscosity u, starting from the critical 
value for the instability to set in, down to the smallest compatible with the resolution 
(642), and obtained a monotonic rise to the correlation dimension d, with l / v ,  with 
a maximum d, = 25 (at  the smallest viscosity). This value is almost five times smaller 
than the Lyapunov dimension we found for the same flow at the same resolution. 
Note that Lafon mentions in his thesis only the viscosity, but no global measure of 
the velocity which would allow the evaluation of a (dimensionless) Reynolds number. 
Nevertheless, we think that the values given by Lafon are smaller than our 
estimation of dimension because of his choice of algorithm. Indeed, Atten et al. (1984) 
showed that a counting algorithm cannot obtain more than lower bounds of the 
attractor dimensions, once the dimension is much larger than, say, 5 (‘border effect ’). 
Comparable discrepancies (i.e. d, Q dL) between Lyapunov and correlation dimension 
in the case of a model of developed turbulence have been reported in Grappin et al. 
(1986). 

The variation of the dimension with injection wavenumber is shown in figure 7, 
which gathers together the results of the four runs AK, AP, AS and AG, and the 
previous results with k, = 2 reported in GL87. It shows that the maximum Lyapunov 
dimension that can be reached (while still keeping the small scales well resolved) 
scales approximately as k,2. More precisely, it is bounded above by the number of 
degrees of freedom contained in scales larger than k;l, which is NLs FZ nk: (denoted 
by a straight line in figure 7). 
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- 

-- 

-- 

Run Bbx Bzz Bcg Bcc Bzs Bbg Bbb Bze 

Res 642 642 128' 128' 64' 64' 64' 64' 
P 2  2 2 2 4 4 4 8 
up 3.05 x 6.10 x 3.81 x 7.63 x 2.9 x 10-lo 1.5 x 1Olo 7.6 x lo-" 2.65 x lo-'' 
u [0.3] [0.06] [0.16] [0.03] [0.3] [0.16] [0.08] [0.3] 

dt 0.08 0.08 0.04 0.04 0.08 0.08 0.08 0.08 

7NL 0.51 0.46 0.45 0.44 0.44 0.44 0.43 0.43 
k, 2.39 2.33 2.32 2.3 2.31 2.29 2.28 2.26 
k, 2.57 2.66 2.68 2.79 5.09 5.31 5.52 12.5 

Ndis l7 6 34 13 8 6 4 4 

160 814 1287 5.9 x 108 3.8 x 104 5.7 x 104 8.5 x 104 1.3 x 105 
7 7 9 13 13 13 20 

N *  28 154 154 255 53 1 53 1 53 1 1257 

d L  0 5.4 5.5 12 21 27 30 50 

TABLE 3. Two-dimensional runs with modified dissipation. p is the power of the Laplacian (see 
(1 c) ; v is the 'equivalent ' viscosity and v, the hyper-viscosity (see text). Ndi8 is the wavenumber 
width of the dissipative range, dt is time step. Injection wavenumber is k, = 2; the forcing 
amplitude is f = 0.1. The middle section gives some time-averaged quantities, at time T = 80: 
nonlinear turnover time T ~ ~ ,  Taylor and modified wavenumber k, and k,, modified Reynolds 
number R,. k* is the (visually estimated) largest wavenumber of the quasi-inertial range (see text 
and figure 9), and N *  = xk*'. The last line gives the Lyapunov dimension at time t = 120. 

3 3 

FIQURE 7. Dimension d, versus injection wavenumber k, in two-dimensional flows. Results for runs 
of type A (black diamonds) and results reported in GL87 (squared symbols) are shown together. 
The straight line is the number N ,  of degrees of freedom with wavenumber smaller or equal to the 
forcing wavenumber k,, namely about xkf .  The three abscissae are k, = 2,4 and k, = %lo (run AG). 
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100 

4.2. Attractor's dimension and size of the inertial range (two-dimensional jlows with 
artificial dissipation) 

The scaling of maximum dimension d ,  with the number of large-scale modes 
illustrates the importance of large scales in two-dimensional flows. However, we 
know that small scales are important too, be it only because we have to take them 
into account in the numerical simulations. We consider in this subsection the 
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FIGURE 8. Time-averaged,energy spectra E,  in two-dimensional flows with artificial dissipation (at 
time t = 80). Continuous lines indicate the r-component, dashed lines the y-component, and dotted 
lines the total component. Line (1) joins the spectra at wavenumber k = 10, line (2) joins the 
spectra a t  k = 20. (a) Run Bcc, (b) run Bcg, (c) run Bzz, (d) run Rze, (e) run Bbb, (f) run Bbg, (9 )  
run Bzs. 

artificial dissipation terms (1 c), which should enhance the relative importance of 
small scales, compared to the previous runs. First, the friction term should reduce the 
relative importance of the largest scales ; second, since the dissipation is peaked very 
strongly on the smallest scales, it gives the flow an opportunity to develop an inertial 
range. 

The flow is driven at the largest possible forcing scale, k, = 2 (the case k, = 1 is 
linearly stable) and the forcing amplitude isf = 0.1. From (3), the amplitude of the 
equilibrium Kolmogorov flow is thus 0.8 (the r.m.s. value is thus 0.56). The initial 
conditions are the same for all runs (a white noise). The only parameters to be varied 
are the small-scale dissipation parameters, p and the hyperviscosity v p  (see table 3). 

These flows show several specific properties. Some are due to the friction term 
V-", which leads to a maximum damping at  the largest scale. There is a minimum 
at k = 1 in all spectra (figure 8). Next, the stationary (turbulent) value of the r.m.s. 
velocity is larger (about unity) than its (linear) equilibrium value of 0.56 given above 
because a well-developed spectrum induces a lower dissipation rate than the 
equilibrium flow (3). Note also that the y-energy dominates the spectrum even at 
relatively small scales (compare figures 8 and 1) .  

The most interesting property is that, with p > 1, the hyperviscosity concentrates 
small-scale dissipation in a narrow band of wavenumbers. The width Ndis of this band 
has to be kept to a minimum, by taking v p  large enough (see table 3;  Ndis is the 
number of wavenumbers for which the dissipation time (vp k 2 P ) - l  is shorter than the 
nonlinear time (kU)-l  x k-l ,  so that the number of 'dissipative' modes is about 

For k < 5 ,  the total energy spectra are comparable for all runs ; the same is true for 
2x(kmax- l )Ndis)-  
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the x-component of the spectrum at least for k < 10 (see the straight horizontal line 
(1) in figure 8). However, the y-component of the spectrum is more sensitive to the 
variations of the hyperviscosity. More generally, rising p or decreasing v p  extends the 
width of the non-dissipative range, which is more or less common to all runs. A part 
at  least of this non-dissipative range can be fitted reasonably well by a power law, 
with slope around -5. We have plotted in figure 9 the superposed compensated 
spectra k5E, (separately runs with p = 2 on the one hand, and p = 4 and 8 on the 
other). It appears that all compensated spectra show a common flat range, extending 
from k = ko towards a maximum wavenumber k* which depends on the diffusivity. 
The oscillations, and particularly the large gap at k = 4, are probably due to the 
peculiar energy balance of the flow which experiences both injection and damping at  
large scales. Accordingly, no particular importance should be given to the particular 
- 5 slope : the only point which matters here is that an approximate power-law range 
with variable size appears. When p = 2, the width k* of the kP6 range appears to 
increase as v p  decreases (figure 9a) .  We tentatively evaluate k* by mere visual 
inspection; we find k* = 3 , 7 , 7 , 9 ,  with v p  decreasing from 3 x loP4 to 8 x lov6. When 
p = 4, we find k* = 13 for the three values of v4 considered, and k* = 19 when 
p = 8 (figure 9b). 

Note that the independence of the energy level at  large scales from the small-scale 
dissipation parameters probably owes much to the friction term which, at 
wavenumber k, = 2, fixes locally the energy injection and thus the enstrophy transfer 
rate to smaller scales (compare the large scales in figures 8 and 1). 

The convergence of the Lyapunov dimension in the different runs versus tirhe is 
shown in figure 10. No effort has been made to subtract the initial transients. Note 
that, in spite of the friction term which might result in a lower dimension, d ,  becomes 
equal to the number of large-scale degrees of freedom (NLs = 12) with the smallest 
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FIGURE 10. Convergence of Lyapunov dimension dL(t)  with time in two-dimensional flows with 
artificial dissipation (type B). Abcissae is time in logarithmic units. 

value of v, when p = 2 (run Bcc), and is always above Nu with p = 4 and 8. For 
comparison, note that the maximum dimension obtained with k, = 2 in flows with 
standard dissipation (and maximum Reynolds number compatible with the 
resolution) is 9 (GL87). 

It is interesting to see how d, rises when the flow becomes more turbulent. To 
evaluate the intensity of turbulence, a possibility is to use the modified Reynolds 
number R,: we see that the dimension d ,  rises monotonically with R,, although not 
very regularly (table 3). However, the definition (4) of R, is somewhat arbitrary, and 
has no physical basis. So we prefer to compare d ,  directly with the width k* of the 
inertial range, though its evaluation is clearly approximate. 

One sees that both d, and k* grow together, and that for chaotic flows (d ,  > 0), the 
relation is approximately linear (see figure 11). For comparison, table 3 shows that 
the number of degrees of freedom contained within k* is N *  = xk*', which is always 
more than an order of magnitude above d,. 

4.3. Three-dimensional flows 
We report in this subsection the results of three simulations of three-dimensional 
flows with standard dissipation. The resolution is 163. Note that measuring, say, 128 
exponents in such flows requires the same amount of memory as solving a two- 
dimensional flow with resolution 512 x 1024, but the CPU time per nonlinear time is 
much smaller in a 163 flow, being built on much larger scales (k,,, = 8) than in a 
512 x 1024 flow. 

The results are reported in table 4. The three runs differ in the type of forcing and 
the viscosity. Forcing is a perturbation of the Kolmogorov harmonic forcing (1 e )  in 
run CY (k, = 2, U, x cos (2y)); it  is isotropic in runs CE and C J  in the wavenumber 
band from 1 < k, < 2. The difference in forcing shows in the time-averaged spectra 
shown in figure 12 : isotropic forcing leads to isotropic flows. Note that the viscosity 
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FIGURE 11. Lyapunov dimension d ,  versus width of the inertial range k* in two-dimensional 
flows with artificial dissipation (type B). 

Run CY CE c J 

Res 

Forcing 
dt 
T 
u 

Y 

R, 
RA 
kA 

Nu3 
d, 

N 

1 63 
0.01 
harmonic 
0.02 
240 
0.29 
18 
12 
2.5 
2836 
67 
48 

1 63 
0.01 
isotropic 
0.02 
160 
0.29 
15.5 
1 1  
2.6 
2836 
67 
57.5 

1 63 
0.005 
isotropic 
0.02 
80 
0.3 
27 
17.5 
3.5 
2836 
67 
105 

TABLE 4.  Three-dimensional runs (with standard dissipation). v is viscosity, dt is time step, T is the 
integration time. U ,  Ri, RA and k, are time-averaged quantities. N is the total number of degrees 
of freedom after isotropic truncation in Fourier space. N, = i r k :  is the number of degrees of 
freedom with wavenumber smaller than the forcing one (which is k, = 2) ,  d ,  is the Lyapunov 
dimension at time T. 

in run CJ  is half that  of runs CY and CE. This value is somewhat too low for the 
resolution ; indeed, the comparison of the three spectra in figure 12 indicates that the 
small scales are well resolved in runs CY and CE, but might not be so well resolved 
in run CJ, which perhaps shows levels of excitation on the largest wavenumber which 
are too high. 

Figure 13 gives some details on run CE. Figure 13(a) shows the evolution of the 
main relevant quantities for run CE (cf. figure 2;  note however that the dotted lines 
now denote the z-component of the various quantities, and not the total component 
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FIGURE 12. Time-averaged energy spectra E,  of three-dimensional flows. Continuous lines indicate 
the 2-component, dashed lines the y-component, and dotted lines the z-component. (a )  Run CY at 
t = 240, ( b )  run CE at t = 160, (c) run CJ at t = 80; see table 4. 

as in figure 2) .  One sees from the kA and k, curves that the small scales of the flow 
show a brief period of larger excitation (around time t = 10) after which a quasi- 
stationary state is established. The first 20 error curves are shown in figure 13(b) : one 
sees that, even at time 160, the ordering of the exponents is far from perfect; note 
however that the global ordering is correct, as is shown by the gentle aspect of the 
cumulated exponent A(n)  curve (figure 13c) from times 40 to 160. Note that there is 
no indication of a complicated attractor's structure as in run AK (figure 13b). The 
dimension is seen to converge around 50 (figure 13d) .  

The dimension d ,  is respectively 48, 57 and 105 in runs CY, CE and CJ. Thus, 
notwithstanding the difference in anisotropy of the flows, runs CY and CE lead to 
comparable values of d,. On the other hand, the low viscosity has the immediate 
effect of increasing d ,  by a factor two in run CJ.  Note that run CJ  has been integrated 
up to a shorter time than the two other runs, but that the dimension converges 
reasonably a t  around 100, as shown in figure 14. 

The values of d ,  which we obtain for the two flows CY and CE that  are best 
resolved are thus again bounded by the number of large-scale modes which is here 
N,, x ink: x 67 (with k, = 2 ) .  The total dimension of the phase space is N = 2836. 

Some comments on the related results of Keefe, Moin & Kim (1989) are in order. 
These authors find a very high Lyapunov dimension in a simulation of a three- 
dimensional turbulent Poiseuille flow: d ,  between 360 and 400 for a resolution of 
16 x 32 x 8 points, a t  a Reynolds number of 3200. They conclude that 'because the 
resolution . . . was coarse in homogeneous directions of the flow, and the spatial 
domain small', this dimension is ' a  lower bound on its true value a t  this Reynolds 
number'. They thus suggest that  adding more modes to the numerical simulation 
would give a system with a still larger dimension. However, this is not necessarily 
true. Indeed, i t  seems to  us difficult to simulate flows at such high Reynolds numbers 
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FIGURE 13. A three-dimensional flow (run CE). (a) Global parameters versus time (continuous, 
dashed and dotted lines respectively denote 2-, y- and z-components). (b) Error curves log(s,(t)) 
associated with the first 20 Lyapunov exponents (i = 1 t o  20). Symbols across the top indicate the 
order of the Lyapunov exponent, increasing from left to right. ( c )  Spectrum of cumulated 
1,yapunov exponents d(n) ,  versus n, at times: t = 40,60,80,100,120,140,160. ( d )  Lyapunov 
dimension d,(t) versus time, varying the starting time to. 
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FIGURE 14. Converge of Lyapunov dimension dL( t )  with time (three-dimensional flow, run CJ). 

with such a low resolution, and still to have well resolved small scales. (The authors 
do not give any information that would allow the reader to assess this point.) If, as 
we think, the flow is not well resolved, then adding more modes (without changing 
the dissipation parameter) will then allow the artificial small-scale excitation to 
decrease, which would give a result opposite to that conjectured by the authors, i.e. 
would reduce the dimension instead of increasing it. Let us recall that it is always 
possible to obtain a dimension equal to  the maximum dimension of the phase space, 
d ,  = N :  it is sufficient to take v = 0 (or, in practice, v much lower than the minimum 
value adapted to the resolution) ; but then, the numerical system does not describe 
a turbulent flow, but the so-called 'absolute equilibrium ' state, which is qualitatively 
different (see also Grappin et al. 1986; and GL87). 

4.4. A study of the basis of Lyapunov vectors 
If we admit that the fluid state convcrges towards an attractor of finite (small) 
dimension d, ,  can we find truncated expansions of the flow on a special basis, such 
that a truncation of order d ,  is enough to represent the flow 1 We investigate in this 
subsection whether the basis of Lyapunov vectors, i.e. the orthonormal set of linear 
solutions from which Lyapunov exponents are deduced, provides such a compact 
basis, following a suggestion by Kraichnan (1987). 

What kind of relation between the nonlinear field and its set of Lyapunov vectors 
can we expect Z Recall the two-dimensional case of a passive scalar 6, which obeys an 
equation identical to the linearized NavierStokes equation (4) for 8+, except for the 
third term of the left-hand side which is missing. The spatial configuration of 6 is 
known to be very near to that of the nonlinear field $, although the spectra of both 
quantities may be completely different, because the coherent structures which are 
present in the nonlinear field @ are absent in the passive-scalar field [ (see Babiano 
et al. 1987). Thus linear solutions (as are the Lyapunov vectors) might be close 
enough to the nonlinear solution $ to  provide a good basis. 

We consider here the case of two-dimensional flows only. Let us examine first the 
simplest case of the conservative system (with no forcing and zero viscosity). This is 
not a realistic model for fluid turbulence since there is no dissipation to reduce the 
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FIGURE 15. Comparison of truncated expansions of an instantaneous two-dimensional flow : plots 
of the truncation error spectra on the Lyapunov vectors basis (black symbols) and on the Fourier 
basis (white symbols). The abcissae is of the order of the truncation. For the Lyapunov basis 
i t  is the number of Lyapunov vectors, for the Fourier basis the number of degrees of freedom 
with wavenumber smaller than or equal to k (i.e. about nk'), k taking integer values from 2 to 
kmaX-l (k,,, =in, if n is the linear resolution). (a) Inviscid case, resolution 8' (run AL): 
Lyapunov dimension is equal to the total number of degrees of freedom of the system N = 28. (b) 
Viscous case, resolution 16' and 32': runs AN (diamonds) and AP1 (squares) respectively. 

small-scale excitation, but it is an interesting system in itself (run AL in table 2). As 
has been mentioned in $4.3, in the inviscid case the Lyapunov dimension must be 
equal to the total dimension of the system in phase space. We consider here a 
resolution of €J2. The corresponding dimension of phase space is then N = 28, 
corresponding to 14 complex modes (note that the maximum wavenumber is k,,, = 
3), which is enough for the system to be chaotic. 

We plot on figure 15(a) the spectrum of (squared) truncation errors made by 
approximating the field a t  time T = 200 by the first n Lyapunov vectors. The 
truncation error spectrum should vanish when n approaches N = 28. The fact that it 
is not exactly zero is related to the orthonormalization procedure. The truncation 
error is seen to be large (comparable with the total energy, which is 0.3) and almost 
constant, while n is smaller than &V= 14; it drops abruptly afterwards. Thus, the 
first-half of the Lyapunov vectors, which are, roughly speaking, the unstable ones, 
all contain a substantial part of the energy of the field. The second half (the stable 
directions) contain almost no energy. We plotted the curve of truncation errors of the 
standard Fourier representation in the same figure for comparison. The two abscissae 
are the number of Fourier modes in the disks k < 1 and k < 2 (in the disk k < 
k,,, = 3 the truncation error is zero since there is no truncation). It is seen that the 
Fourier representation converges much more quickly than the Lyapunov one. 

We next consider two runs with finite viscosity (runs AN and AP1, in table 2), at  
resolutions 162 and 322. In both cases, we calculate 148 exponents, which represent 
all the degrees of freedom in the first case, and a substantial fraction (148 over N = 
708) in the second case. Results are presented on figure 15 (b). We plot as previously 
the spectrum of squared truncation errors (black symbols) and the same spectrum for 
Fourier representation (white symbols). We observe now an error of about 100% for 
the Lyapunov representation when the order n of the truncation is lower than the 
computed dimension d ,  (instead of half the dimension as in the previous inviscid 
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case), which is respectively d, x 8 and 29 for runs AN and APL. However, in contrast 
with the inviscid case (run DL) previously considered, the decay of the truncation 
error is not abrupt a t  larger values of n. Instead, the spectrum approaches a 
powerlaw, similar both for the Lyapunov and Fourier representation, but again 
larger at all wavenumbers for the Lyapunov representation. 

5. Summary and conclusion 
We have studied the turbulent state developed by an incompressible flow 

submitted to  a constant periodic force, trying to characterize this turbulent state by 
the spectrum of Lyapunov exponents of the flow (and the associated errors), and by 
the Lyapunov dimension of the attractor. 

(i) Our first result concerns the interpretation of the time evolution of the 
instantaneous exponents and dimension. It is of course well known that large initial 
transients often occur during the calculation of Lyapunov exponents in dynamical 
systems ; these transients correspond to persistent fluctuations in the instantaneous 
exponents. In general no particular attention is given to them. Grappin et al. (1988) 
have however shown that in two-dimensional Navier-Stokes flows, the permanent 
fluctuations in the first instantaneous Lyapunov exponent (the ‘error ’, or largest 
stretching rate) do have a physical significance: they are associated with abrupt 
changes in the characteristic eddy turnover time, which represents the internal clock 
of the fluid. We generalize this result here by showing that the whole spectrum of 
instantaneous positive exponents rises when the characteristic turnover time rises, 
which manifests itself by changes in the energy spectrum at large scale. In a 
particular case (run AK) we find that the flow explores successively two distinct 
subdomains in the attractor, the recurrence time being much larger than the 
dynamical timescale of the flow. If we tentatively use the Kaplan-Yorke formula in 
each separate subdomain, we find that the ‘large’ one has a dimension d, x 20, and 
shows approximate energy equipartition between all scales larger than the injection 
scale ( 1  < k < k, = 4, see figure 3a) ,  while in the ‘small’ subdomain, we find d, z 12, 
and the energy is essentially concentrated on the largest scale k = 1. 

(ii) The correlation between the large-scale spectral features and instantaneous 
exponents is a clear indication that in two-dimensional flows the ‘pertinent ’ scales 
which may contribute to the attractor’s dimension are above the injection scale. This 
is indeed confirmed by our second result which is that, when one varies the injection 
scale, the Lyapunov dimension of these flows is bounded above by the number NLs 
of degrees of freedom contained above the injection scale (figure 7).  

(iii) These results concern two-dimensional flows with maximum resolution 12€J2, 
and maximum (average) Reynolds number about 80. When an inertial range is 
present, which is obtained here by artificial dissipation, the dimension of two- 
dimensional flows may be much higher than NLs. d, rises with the size k* of the 
inertial range; however, it only rises linearly (figure l l ) ,  so that the dimension is 
much smaller than the number of degrees of freedom contained in the inertial range. 
Note that the artificial dissipation comprises a friction term which damps the largest 
scales, and so partly determines the position of the curve in figure 11,  but should not 
modify the linearity of the dL(k*)  relation. 

(iv) In  three-dimensional flows, the dimension is of the order of or a little larger 
than N L S .  However, d, is only larger than NLs in a flow in which the small scales are 
not well resolved (run CJ). Note that the very limited resolution does not allow a 
scaling with the number of large-scale modes to be sought, as can be done in tvro- 
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dimensional flows, and that, of course, no inertial range can be expected with 
resolution 163. 

(v) Finally, we find that the convergence of truncated expansions of the 
instantaneous flow on the basis of Lyapunov vectors is worse than on the standard 
Fourier basis. A similar negative result has been recently reported by Keefe (1989) 
on the decomposition of the solution of the Ginzburg-Landau equation on the basis 
of its Lyapunov vectors; he also concludes that the Lyapunov basis is the best one 
to represent the time derivative of the nonlinear solution. These results are not 
unreasonable, but leave open the problem of finding a reduced representation of a 
turbulent flow with a small attractor’s dimension. 

The fact that standard flows are bounded by the number of large scales is perhaps 
not a surprise, since we know that there cannot be any substantial inertial range in 
these flows at  the resolution studied here. However, the slow rise of d, with the size 
k* of the inertial range in flows with modified dissipation is more peculiar, and needs 
interpretation, since it contradicts theoretical predictions, either based on intuition 
(Landau &, Lifshitz 1971) or much more sophisticated (Constantin et al. 1985). Note 
this is not due to a shortcoming of the computational method, since similar 
computations on models of turbulence have given ‘large ’ dimensions (Manneville 
1985; Grappin et al. 1986; Yamada & Ohkitani 1988). 

Our general conclusion is that the small scales have, relatively to large scales, not 
much importance in determining the dimension of the turbulent flows we have 
studied, even when an inertial range is present. It is tempting to interpret this as a 
signature of the presence of coherent (but chaotic) structures at  large scales, the role 
of small scales being purely passive. Legras et al. (1988) and Babiano et al. (1987) 
have indeed convincingly shown that the origin of the difficulty found in reproducing 
the self-similar spectra predicted by Kolmogorov-like theories in two-dimensional 
numerical simulations lies in the organized large-scale eddies which develop in two- 
dimensional flows. Such coherent structures are not taken into account by a self- 
similar theory. Now, the theories and models that predict large attractor dimensions 
use in one way or another a ‘built-in’ hypothesis of self-similarity, and thus do not 
take coherent structures into account: it is not surprising that they predict 
Lyapunov dimensions larger than those obtained via numerical computations. 
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